Viewing in OpenGL

Professor Raymond Zavodnik

Fachhochschule Regensburg, Germany, February 15, 2017
Motivating Example

To take a photograph of a scene:

- Set up your tripod and point camera at the scene (Viewing Transformation)
- Position objects within the scene (Modeling Transformation)
- Choose an appropriate camera lens (Projection Transformation)
- Choose the size of the photo (Viewport Transformation)
The Graphics Pipeline in OpenGL

The ModelView phase

■ Start by defining an object in its own **local coordinate system**

■ Then place it in the scene
 ■ The object now has standardised scene coordinates, called **eye coordinates**
 ■ The camera is at the origin and pointing down the negative z-axis
 ■ The “up” direction is the positive y-axis

■ The placement happened by a sequence of **rotations** and **translations**

■ The order is important!!
Matrices in OpenGL

- Are stored internally in *column* order
- This is not apparent to users if they do not manipulate them directly
- Points are also stored as columns
- Putting a point through a matrix results in that point in a new coordinate system
- Thus the ith axis in the new system is the ith row of the matrix
Matrix Stacks

- OpenGL essentially maintains two stacks—only one active at a time
- **Set by** `glMatrixMode`
 1. `GLMODELVIEW`: Place objects in an observed scene
 2. `GLPROJECTION`: Map either orthogonally or using perspective
- `glPushMatrix` pushes a matrix onto the top of the active stack
- `glPopMatrix` does just that
- Pushing the identity clears the stack
How is the Scene Defined?

- The *model* matrix puts an object into world coordinates
- The *view* matrix that object further into a scene with a camera and some orientation
- The result is *eye coordinates*: By default the camera is set at the origin and is aimed down the negative z-axis. The up-direction is the y-axis
- Of course, the user can define these
- There are no OpenGL operations in world coordinates, hence the *modelview* transformation, which is just the product of the two
Matrices in OpenGL

- `glLoadIdentity(void)`
- `void glLoadMatrix[fd](const TYPE* m);`
- `void glMultMatrix[fd](const TYPE* m);`
- `void glRotate[fd] (TYPE theta, TYPE x, TYPE y, TYPE z);`
- `void glScale[fd] (TYPE x, TYPE y, TYPE z);`
- `void glTranslate[fd] (TYPE x, TYPE y, TYPE z);`

The result is multiplied with the top of the active stack.
Now project the objects in the scene onto the Projection Plane

- For perspective it is necessary to do this in two steps
- Map the entire space by an appropriate matrix, clipping away those portions of the objects that are outside of the viewing volume. Result is **Clipping Coordinates**
- Do the nonlinear part (perspective divide) to get a nonlinear projection onto the projection place. Result is **Normalized Device Coordinates** or **NDC**. These coordinates are still floating point numbers.
- Now map the resultant vertices to your computer screen ("rasterization") The resulting pixels are called **Window Coordinates**
Transformations
Coordinate Systems and Matrices

Matrices in OpenGL
The Modelview Matrix
Matrix Operations

Matrix Manipulation
Procedures in OpenGL
List of Commands

OpenGL Transformations
The Modelview Transformation
The Projective Transformation
Orthographic Projection

Viewing in OpenGL
Professor Raymond Zavodnik
Homogeneous Coordinates

- A 3D point is given by the 4 dimensional column vector

\[
P = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}
\]

- The last coordinate \(w \) is usually 1.0

- If \(w \neq 1.0 \), \(x \), \(y \) and \(z \) in 3D space can be recovered by dividing by \(w \)

- This is only needed for the perspective transformation
3-D Transformations

- Use 4×4 matrices stored in 1-dimensional arrays in column order
- This the array $\text{GLfloat } A[16]$ is equivalent to the array

$$M = \begin{pmatrix}
\end{pmatrix}$$

- Transformation composition is through post multiplication
- The last matrix specified is the first applied
OpenGL State: Matrix Stacks

- OpenGL keeps two stacks of matrices as part of its state: Modelview matrices (with max 32 entries) and Projection (2 entries).
- A matrix state is changed when a matrix multiplies the top of the stack for that matrix type.
- The matrix on top of each respective is called **Current Matrix** if there is no confusion.
- Applications can push matrices onto the matrix stack, alter it and return by popping it.
- OpenGL initializes matrix stacks with the identity matrix.
- Thus the commands `glPushMatrix()` and `glPopMatrix()`.
Matrix Procedures

- `glLoadIdentity()`
- `glLoadMatrix` const TYPE *m)
- `glMultMatrix` (const TYPE *m)
- `glRotate[fd]` (TYPE theta, TYPE x, TYPE y, TYPE z)
- `glTranslate[fd]` (TYPE x, TYPE y, TYPE z)
- `glScale[fd]` (TYPE x, TYPE y, TYPE z)
Rotation About An Axis

- Multiply the current matrix with this one, which rotates an object (or a local coordinate system) counterclockwise θ degrees about the axis defined by the point (x, y, z)

- Replace the matrix on top of the matrix stack by this result
Translation by a Vector

- Multiply the current matrix with this one, which translates an object by the vector \((x, y, z)\)
- Replace the current matrix on top of the matrix stack by this result
Scaling an Object

- Multiply the current matrix with this one, which scales an object in each of the x, y and z direction by the respective quantities x, y, z
- Replace the current matrix on top of the matrix stack with this result
- Note that negative scalars result in reflections
- Positive scalars stretch, negative ones shrink
Properties of OpenGL Matrices

- Matrix multiplication is not commutative.
- Thus, if R is a rotation matrix and T is a translation matrix $RL \neq LR$ in general.
- Consider the code

  ```
  glMatrixMode (GL_MODELVIEW);
  glLoadIdentity();
  glTranslatef(1.0,1.0,0.0);
  glRotatef(45, 0.0,0.0,1.0);
  ```

- Postmultiply first a translation to the (x, y) point and *then* rotate this point 45 degrees about the z axis.
- This is not the same as rotating 45 degrees about the z axis and *then* translating by $(1, 1)$.
The Modelling Transformation

- The whole process starts with **Object Coordinates**
- The **Modelling Transformation** is applied to objects to give us **World Coordinates**, which are not used in OpenGL
- It main purpose is to position and orient the model
- This is usually a concatenation of rotation, translation and scaling
- Consider the program *cube.c*
- In this case we use `glScalef(1.0, 2.0, 1.0)`, stretching the cube in the y-direction by a factor of 2
Defining the View Matrix

- Maps world to eye coordinates
- Consists essentially of a rotation ("ViewOrientationMatrix") and a translation ("ViewTranslationMatrix")
- The translation matrix is just the inverse of translation to the eye location.
The Viewing Transformation

- This is analogous to positioning and aiming the camera.
- See again `cube.c`
- Here we used `gluLookAt()` from the GLU library:

```
  gluLookAt(ex, ey, ez, rx, ry, rz, ux, uy, uz)
```

- Effect: Map the Reference Point to the negative z-axis, the Eyepoint Eye to the origin and the Up Vector to the positive y-axis.
- The result is **Eye Coordinates**
- Consider the program `cube.c`

- Note: `gluLookAt()` comes before `glScale()` in the program text, although it is applied after the scaling.
Calculation of the View Matrix

- Let n be the normalized vector from the target to the camera:

 $$n = \frac{\text{eye} - \text{target}}{|\text{eye} - \text{target}|}$$

- Project the “up” vector v_{up} (also specified in world coordinates) onto the viewing plane, remembering that the normal to this plane is just n:

 $$v = v_{up} - (v_{up}, n)n$$

- Normalize the up-direction on the viewing plane:

 $$v = \frac{v}{|v|}.$$

- Finally form a right-handed system:

 $$u = v \times n$$

- After orienting, place the camera at the origin:

 $$T(-\text{eye}.x, -\text{eye}.y, -\text{eye}.z)$$
The View Orientation Matrix

\[
VOM = \begin{pmatrix}
u_x & u_y & u_z & 0 \\
v_x & v_y & v_z & 0 \\
n_x & n_y & n_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

- Notation uses row premultiplication, else use transpose
- The utility function (deprecated) \texttt{gluLookAt()} does this for you
- Homemade variety: Set \texttt{GL_MODELVIEW}, load the \textit{VOM} and translate by the negation of the eye coordinates
Remarks

- The net effect of both transformations is to map object coordinates into eye coordinates.
- These are usually considered together and called **Modelview**.
- If this needs to be specified write `glMatrixMode(GL_MODELVIEW)` to distinguish it from a projection.
The Projection Transformation

- Analogous to choosing a lens for the camera
- Can be one of two types:
 - **Orthogonal**, which induces no foreshortening
 - **Perspective**, which does
- In the program we used the perspective projection

\[
glFrustum(\text{ClippingPlanes})
\]

\[
glFrustum(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far})
\]
The Projection Transformation

- Notice the implicit camera position
There is another more camera-oriented approach

- Consider the angle \(fovy \) defining outgoing vertical rays from the viewer
- Determine the **aspect ratio** of the viewing window’s width to height

We obtain: \(\text{gluPerspective}(fovy, \text{aspect}, \text{near}, \text{far}) \)
Orthographic Projection

- With **Orthographic** Projection a rectangular viewing volume is specified with 6 clipping planes, but there is no viewer as in perspective.
- There is simply a **Direction of Projection** and a **Projection Plane**.
- There is no foreshortening, so line segment lengths and angles are preserved.
Orthographic Projection

- Thus
 \[\text{glOrtho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far}) \]
- The preferred projection in Cad/Cam programs
- Note the 2-D Version \text{glOrtho2D}()
Projection and Clipping

- Objects that are outside the Viewing Volume must be clipped, i.e. eliminated
- Objects that are partially outside, partially inside must also be clipped, but only those portions lying outside
- Objects completely within the Viewing Volume are untouched
- This process is carried during the Projective Transformation, before the Projective Divide (thus “Clipping Coordinates”)

Objects that are outside the Viewing Volume must be clipped, i.e. eliminated

Objects that are partially outside, partially inside must also be clipped, but only those portions lying outside

Objects completely within the Viewing Volume are untouched

This process is carried during the Projective Transformation, before the Projective Divide (thus “Clipping Coordinates”)

The Viewport Transformation

- This is where the size of the photograph is specified.
- The net result of applying the Projective Transformation is a standard two dimensional region (of type `GLdouble`) (specifically `{(u, v) | − ≤ u, v + 1}`) called Normalized Device Coordinates or NDC.
- Now object vertices in these coordinates must be mapped to Pixels or Window Coordinates, which are of type `GLint`.
- Thus

  ```
  glViewport(GLint x, GLint y, overbrace GLint width, GLint height)
  ```

- Note If there is to be no distortion, the proportions of the window width to height must be the same as the viewport’s proportion of width to height.
The Viewport Transformation

- See *cube.c*
- Thus the Perspective and Viewport transformations are reset in `reshape()`
Some General Remarks

- The Modelview Transformation: It is mathematically irrelevant whether the camera is moved towards or away from a fixed scene or whether the scene is moved in the opposite direction.

- Moving the camera 5 units up the z-axis (away from the scene) is thus `glTranslatef(0, 0, -5)`, thinking the scene objects stationary.

- OpenGL does not use **World Coordinates**. Thinking in terms of World Coordinates requires adjusting to OpenGL conventions, as the order of transforms is opposite to this paradigm (see above).
Hierarchical Modeling Systems

- Recall that moving the camera back 5 units is given by `glTranslatef(0, 0, -5)`.
- This corresponds to moving the origin to (0, 0, 5), thus translates the local coordinate system by 5 units.
- The command `glTranslatef(0, 0, -5)` can also be thought of as applying to an object, in which case it is moved 5 units down the negative z-axis. The camera is considered stationary, i.e. at the origin.
- The result is mathematically the same.
- Now use this to advantage.
Hierarchical Modeling Systems

- Suppose you want to make a (complex) model of a car
- Suppose you have drawn the chassis
- To draw a wheel, remember where you are and then change coordinate systems to the point where you want to affix the wheel, orienting it the way you want to draw the wheel
- Draw the wheel
- Go back to where you were and do the same for the other three wheels
- Here “remember” means note the top of the Modelview stack.
- Change coordinate systems means pushing the corresponding matrix onto the stack, to obtain a new coordinate system
- Going back, just means popping that matrix, thereby restoring the old coordinate system