A Family of Methods for Preliminary Highway Alignment

DAN TRIETSCH

Streamline Operations, Oakland, California

The alignment of a highway is usually determined in two or even three stages. The preliminary stage, also referred to as the corridor selection, is concerned with finding a piecewise linear trajectory, which is refined in the higher stages. In this paper we present a family of methods for this preliminary design, which includes some published methods and some new ones. The new methods shown were designed to overcome some of the more obvious drawbacks of the others. Finally, one specific new method is recommended, which is "Pareto-optimal" and appealing; however, no single method within the family dominates all the others in all the parameters considered.

This paper and its sequel, "Comprehensive Design of Highway Networks," are certainly not the first papers on the design of highway networks. There is a considerable literature on the subject, including a fine book by Steenbrink that includes a tentative implementation of its methodology to the "integral" Dutch highway system. However, despite the existence of such planning tools, many highway networks continue to "plan themselves," i.e., to evolve in a piece-meal, haphazard fashion. In the opinion of the author, the reasons lie in the fact that the procedures for the design of a single highway published to date are not yet adapted for fast computerized preliminary design. Moreover, many existing models assume that the costs of the highway system to be developed are known in advance and then proceed to design a system to comply with such costs, whereas it should actually be the other way around. Only in countries like The Netherlands—whose researchers, not incidentally, are playing a leading role in this field—doas a combination of a flat terrain and of very high transportation demands allow such accurate cost projections. However, in most instances this is not the case.

In order to appreciate both the need for accurate estimation of costs for individual highways, and the justification for heuristic network design procedures, the reader is referred to Pearman, according to whom the network design problem is rich in good suboptimal solutions. It follows that heuristics are apt to do very well, and in view of the complexity of the problem, which is one of the toughest NP-complete problems, heuristics are probably our only choice here, at least for medium-size problems and up. With respect to the need for accurate cost estimation, Pearman suggests that, in most instances, many different network configurations yield solutions with nearly equal cost values. This, of course, means that the solution must be highly sensitive to the input data on arc costs: slightly different cost inputs may yield very different network configurations. Thus, cost estimation is one of the most important issues to address in practice.

Another question that has been neglected in the existing literature concerns the optimal location of road junctions. The reason for this omission may be that even in the Euclidean case (i.e., flat country and no constraints), and with fixed flow-independent costs, this problem—widely known as the Steiner tree problem—is very tough mathematically, and it seems that on the average the possible savings ascribable to an optimum solution are not more than 2.5%. However, 2.5% may represent an impressive amount of money here, and it seems that better planned junctions may have other transportational advantages as well. Hence, this issue should be addressed as well. Note, however, that if we take up this particular gauntlet, our candidate highways-set is no longer even countable, not to mention finite.

It is the purpose of this paper and its sequel to address the problem of a highway network design for any terrain, including treatment of the locations issue, by a method which can be computerized and solved at reasonable cost (i.e., the computer runs should not cost more than, say, 10% of the design budget). This approach would not be feasible without very fast computers (2 million instructions per second).
(MIPS) or so would be a rather low figure here. However, the problem certainly justifies the use of such computers. True, the network design procedure suggested here has some heuristic features, and it is therefore a satisfying solution and not an optimal one. But, since it is not very likely that we will live to see a practical and optimal solution to this problem, this can, perhaps, be tolerated.

1. INTRODUCTION

The Highway Optimization Problem

Our problem is to connect two given points on a surface, by a highway capable of transporting a given projected demand, \(q \), so that the total costs associated with it will be minimized.

The costs considered should include construction costs (earth moving and pavement), capitalized users’ costs (fuel, time, mechanical wear and tear and accidents), maintenance costs and other costs, such as land use or ecological penalties.

The design should conform to constraints on the horizontal and vertical curvatures, e.g., it may be impossible to construct highways in certain regions due to earth quality, existing constructions, etc. The slopes can be bounded too (as is usually done in practice), but their effect can be better accounted for through the users’ costs (see TRIETSCH AND HANDLER\(^{[10]}\)).

Some of the costs concerned are not very dependent upon the alignment, except perhaps through the total length implied by it. The pavement cost and maintenance costs are such examples, and we will not refer to them much for that reason. The earth moving costs and the users’ costs, however, are very dependent upon the alignment, and we will concentrate on these. (See \([10]\) for an elaborate discussion of this issue.)

Generally, a two- or three-stage approach is taken where first a piecewise linear horizontal trajectory—sometimes referred to as a corridor—is found, and then a smoother alignment is sought, in the neighborhood of the piecewise linear one. (See \([8]\) for some notes on the refined or exact vertical and horizontal alignment problems.)

In this paper we discuss the first stage of the design process. We present a small family of such methods, old and new, good and bad, practical or theoretical, and recommend one. Also, we discuss in some detail how horizontal and vertical curvature constraints can be enforced—an important issue which has not received its due treatment in the past. Finally, a bound is developed for the area where the highway must pass. This bound may sometimes serve to rule out the possibility of backward bends (e.g., going due north for a short stretch on a southbound highway), an annoying problem, indeed (although our family includes some members equipped to deal with it).

Existing Approaches

O’Brien and Bennett\(^{[4]}\) suggested a model of Dynamic Programming (DP) with a rectangular coarse grid, to solve the problem of minimizing construction and users’ costs. In 1968, Turner\(^{[11]}\) started developing a model based on a square grid where all kinds of relevant costs are evaluated for each square. The best corridor is found as the shortest path upon the grid. Nicholson et al.\(^{[3]}\) suggested a two stage model (approximate and exact design). For the first stage they seem to have adopted O’Brien and Bennett’s DP model,\(^{[4]}\) and for the second stage they used an unspecified method of calculus of variations. Clearly, a DP model on a coarse rectangular grid does not allow backward bends, although these may be required in the optimal alignment. Also, according to the authors themselves, they did not solve the problem of the curvature constraints satisfactorily (but at least they recognize it, unlike some others).

Parker\(^{[5]}\) suggested a model for minimizing the construction costs, subject to slope constraints. The model finds a corridor similar to Turner’s. Although the method is far from exact, Parker’s model is an interesting heuristic, which could perhaps be beneficially merged with Turner’s method. The general idea of the Parker model is to find a surface which covers the whole area considered for the highway, such that: (a) the total earth moving costs associated with the (hypothetical) project of landscaping the ground to fit the surface are minimized; and, (b) the slope constraints would be satisfied anywhere on this surface. This is achieved by a linear programming (LP) regression model. Since the whole surface has bounded slopes, a highway designed on it is feasible as far as the slope constraints go, and Parker proceeds to locate the best such highway as an instance of the shortest path problem on a square grid (similar to Turner’s method).

As we can see each method has some kind of search grid associated with it, and some method of calculating the costs for arcs on it. In more detail, both Turner and Parker use a square search grid. O’Brien and Bennett, followed by Nicholson et al., use a DP rectangular grid. As for the problem of approximating the costs associated with any arc on the grid, Turner uses an unspecified method (presumably regression on old highways or professional cost evaluations) to assign various costs, such as users’ costs, construction costs, land usage costs (right-of-way), social considerations, and ecology penalty costs to each square. (His model is very commendable for taking all these factors into consideration, and this idea should cer-
tainly be used in any model we choose; however, the real construction and users' costs cannot be approximated satisfactorily in this manner.) Turner's output includes colorful cost maps covering very large areas, each assigned to a particular factor, e.g., his construction costs looks a lot like a passable-terrain map based on the ground slopes. This implies that the direction of a highway has no bearing on its construction costs, which is simply not true. However, such maps can serve well for factors such as land cost, and so on. Parker's model uses the surface technique to take better care of construction costs, while the users' costs are not calculated, but they affect the design indirectly by the slope constraint. Parker does not consider costs of any other kind, but his model can fit “as is” into Turner's framework, with mutual benefit. (However, the convention of taking care of the users' interests by imposing a constraint on the slope, is an old civil engineering tradition which should have been retired long ago. In other words, users' costs associated with the slope should be calculated directly, and become an integral part of an optimization algorithm. In [10] some specific ideas on how this can be done are discussed.) In the DP model, earth moving costs are supposedly calculated according to the vertical alignment, which is part of the DP search output, i.e., at every stage we choose a location and an elevation for the highway, so the output is a complete vertical and horizontal piecewise linear alignment, and not just a horizontal one.

In order to define our new family, we look separately at these two issues, and it turns out that combinations of grids from one and calculation methods from another are feasible. We then add new grids and new calculation methods.

2. SEARCH GRIDS AND COSTS

Search Grids

So far, we have two existing grids:

(a-1) DP rectangular search grid, where the stages are evenly spaced lines (or planes) perpendicular to the segment connecting the origin to the destination, and the states are points on them (arranged in rectangles in the planes' case). (a-1) gives us good selective angular determination in the sense that consecutive segments of our piecewise linear trajectory can be tilted relative to each other at small or large angles, as required, but it does not make possible backward bends, which are necessary sometimes in mountainous terrain. Figure 1 depicts such a network, with a trajectory which cannot be approximated by it.

(a-2) Square grid, with eight directions from each square (except for boundary squares which have less than eight). This grid makes possible backward bends, but it has a blunt selective angular determination since only integer multiples of 45° can be accommodated. This means that a trajectory may be shifted as much as 22°30' from the optimum, costing lengthwise up to 1/cos(22°33') - 1 = 8.24%. As a result, it may happen that we will prefer to go in a straight line even when it is up to 8.24% more expensive than to shift 22°30'. Figure 2 depicts
such a grid. (Below and in the Appendix we mention an even more serious drawback of poor angular selectivity.)

Cost Approximation

Again, so far we have two approaches:

(b-1) The cost per distance unit is determined for any location (square) either exogenously or by using parameters affected by the local conditions, such as regression or Parker's LP surface.

(b-2) Detailed calculation of the earth moving costs, with or without the users' cost, by determining the vertical alignment in a piecewise linear manner concurrently with the horizontal alignment.

By now we have four methods: Turner's model is (a-2) with (b-1); Parker's model is again (a-2) with (b-1); the DP model is (a-1) with (b-2); and, though we do not know of a model which combines (a-2) with (b-1) or (a-1) with (b-2), and see no particular reason to use one of these, it is certainly possible.

New Search Grids

(a-3) An ellipto-hyperbolic DP search grid, where the stages (when viewed from above) are hyperbolas and the states are defined on them by orthogonal ellipses. The origin and destination are the common foci to all these. This grid, depicted in Figure 3, retains the angular selectivity property of (a-1) and makes possible backward bends near the foci. If we use a similar model for each arc (i.e., a two stage application, or, more generally, a multistage application), such backward bends are made possible elsewhere too. (A bound we develop below makes sure that this procedure will have convergence properties in the sense that a finite number of application stages will suffice.)

(a-4) A honeycomb grid with 12 directions, corresponding to the hours in an old fashioned clock (for "old fashioned" read "nondigital," or the reader can stay "semimodern" with an analog watch instead). This grid, depicted in Figure 4 has better angular selectivity than (a-1), leading to shifts of up to 15°, at a cost of $1/\cos(15°) - 1 = 3.53\%$, or $8.24/2.33$. This, of course, results in somewhat more computation (50% more) and some programming effort. Table I lists the hours together with an indexing method which would fit this grid (as demonstrated in the figure, where we dropped the commas). This notation system makes it possible for the computer to identify the adjacency of the hexagons.

New Cost Approximation Methods

Some of the mathematical background required for this section is given in the Appendix. For a discussion of the exact vertical alignment problem, used in (b-4) below, see [8]; the theoretical justification to this method is elaborated in [10].

(b-3) If the terrain is relatively smooth, we may con-
sider a first approximation by choosing a vertical alignment near ground level. As shown in the Appendix, this does not mean zero earth moving costs. A careful examination of the formulae shows that as long as \(\delta \) is small relative to \(\delta_0 \) (\(\delta_0 \) are defined in the Appendix as the relative elevation of the highway and a function of the side slope, respectively), the earth moving costs are not very sensitive to it, so assuming \(\delta = 0 \) (or say \(\lambda \delta_0; \lambda \in [0, 1) \)) will not lead us far astray. In other words, we determine the earth moving costs as a function of the ground gradient and of the slopes of the highway. To the earth moving costs, we add the implied users' costs, the pavement costs, right of way, etc., as in [11].

Notes: (i) When the gradient and slope are given, and we know that the alignment is near ground level, the side slope of the ground at the highway's ramp can be obtained. (ii) The larger the side slope of the ground, the more freedom we have to align the highway not exactly at ground level, and the more we need that freedom. (iii) The side slope is strongly dependent upon the direction of the highway, and is a chief factor in the earth moving cost. It follows that good angular selectivity is even more important than implied by the percentages mentioned above. This last observation also holds for (b-4) below.

(b-4) When we are not willing to restrict the vertical alignment to be close to ground level, and we should not always be willing to do that, it is possible to solve for the optimal vertical alignment for each possible arc, using the method described in [8], and thus get a fairly exact approximation to the costs implied. However, some caution is required to ensure connectivity between the ends of the respective arcs. (The optimal alignment of one need not necessarily specify the same elevation at the endpoints as do others sharing the same endpoint.) To this problem we suggest (i) a formal solution and (ii) a practical heuristic, as follows: (i) We can obtain the costs as functions of the endpoints' elevations, and then look for the shortest path including these elevations, as in the DP model described above, but with the refinement of not assuming a linear vertical alignment between these knots. (ii) We can add margins to the arcs before optimizing the vertical alignments and then chop them off again. This practical heuristic will make the alignments more compatible with the conditions just outside their own ranges.

Obviously we now have 16 models, but not all of them are necessarily very applicable. For instance, all those using the eliptohyperbolic DP grid (a-3), are not very appealing due to the fact that they may require multistage application, and the models using (b-3) cannot be considered to be sufficient for all applications. On the other hand, none of the old methods offers simultaneous treatment of the backward bends issue and the angular selectivity issue.

Before we conclude our comparison, however, let us examine the horizontal curvature bound, and a bound on the trajectory implied by it.

3. CURVATURE AND ALIGNMENT

Curvature Constraints

Both the vertical and the horizontal curvatures of a highway are subject to constraints. These are stricter the higher the grade of the highway, and are thus indirectly a function of the projected traffic flow on the highway. (See Ref. 1 for a discussion on how the users' costs can be taken into account more directly in this case. Interestingly, [1] and [10], which are completely independent both preach the same basic idea: bounds are not adequate substitutes for good design.)

In this section, we will concentrate on the horizontal curvature constraints—as such—with regard to the problem at hand (i.e., for the preliminary design). We assume that the bound is given exogenously, and we want our piecewise linear design to conform to it, in the sense that smooth curves which approximate the piecewise linear design should be made possible—and this depends on the angles between adjacent arcs and the arcs' lengths. In other words, for grids such as (a-1), (a-2), and (a-4), we can translate the given curvature constraints to angular constraints. In the case of (a-2) these would constrain the angles to be, say, 90°, or 135° at least, while for (a-4) it could be 60°, 90°, 120°, or 150° at least. For (a-1) and likewise (a-3), the angle may be specified more exactly, and at least in the case of (a-3) it may depend upon the length of the arcs involved—which may discourage us even further from using it.

The question remains: How do we enforce these bounds? We demonstrate the answer for (a-4) first, the (a-2) case being an analog, and then we tackle the (a-1) case, with the (a-3) case being analogous.

For (a-4), if we entered a node in a direction of a certain hour, say \(t \), from the last hexagon, then we can proceed in one of the directions of \(t - k, t - k + 1, \ldots, t + k - 1, t + k \), where \(k \) is large for large hexagons or liberal constraints, and small for small hexagons or strong constraints. However, \(k \geq 1 \) is a must if we wish to allow nondirect trajectories at all. (It follows that the hexagons must be larger than some minimal value, about 500 meters diameter for high
grade highways, or less (about half) for lower grade ones.) Now, how does a shortest path algorithm “know” which paths are allowed and which are not? The answer is that we actually use an augmented grid, where each hexagon is presented not by one node, but by 12 nodes. Each of the new nodes represents a different direction of entry into the hexagon. The way this solves our problem is best explained by an example. Suppose we allow only angles of 150° or 180°. If \(l \) is the optimal cost of an arc from the node originally indexed as \(i \) to the node in the direction of the hour 12, say \(j \) (e.g., \(i = 2020, j = 2220 \) in Fig. 4), we assign the value \(l \) only to the arcs connecting the pairs of nodes of the augmented grid \((i, 11) \) and \((j, 12) \), \((i, 12) \) and \((j, 12) \), \((i, 1) \) and \((j, 12) \). All other arcs connecting \((i, *) \) to \((j, *) \) are assigned the value \(M \) which represents a high penalty. The computational effort implied by this procedure is negligible compared to the effort invested in generating the arc costs.

In a DP situation, in order to achieve a similar result, we have to add a state variable describing the exit direction and then only legitimate directions (i.e., within a cone defined by the exit direction of a node) are checked while folding backwards (that is, in the general DP way; of course, if we prefer to go forward we can define the cones by the entry direction). Actually in this situation a heuristic suggests itself where we use a limited number of directions for each node, hoping that this will not exclude the optimal trajectory or allow too steep angles. This heuristic is, we believe, better than the one used by Nicholson et al.\[^3\] where a questionable technique is used to generate three “shortest” paths, in the hope that one of them will conform to the bound. (The technique they use is to raise the costs of all the arcs in the shortest path, so the algorithm is forced to choose another path, etc. Of course, if that could really do the job, we would have solved an \(NP \)-complete problem—see \textit{Gary} and \textit{Johnson}\[^2\] (p. 214)—in polynomial time, thus showing that \(P = NP! \))

A Bound on the Search Area

Generally speaking the literature neglects the issue of defining the area where the search for the alignment should take place. Often this area is rather restricted for some exogenous reasons, and we have to make do with what we have. However, it may happen that we have a choice in that matter. Choosing too large an area costs money, while choosing a too small one may lead to missing the real optimum, and may cost much more. With some bad luck we can have both problems together by defining the area too large at some vicino-

...
of application stages will suffice, since if \(O \) and \(D \) are close enough the case of Figure 5b prevails!

4. CONCLUSIONS

We have a family of 16 methods, a way of dealing with the curvature constraint, and a bound on the search area which may rule out backward bends for short enough stretches. It is actually not correct to compare the methods on a global basis, but rather we should consider them relative to the specific conditions of a given project, e.g., if the bound ensures us there are no backward bends, we may consider (a-1) more seriously than otherwise. However, (a-1) is clearly a bad choice for a highway stretching across states, where (a-2) or (a-4) should be considered to the exclusion of the others. If the bound does not ensure lack of backward bends, but the distance to be covered is relatively small, (a-3) may have an edge. However, it seems that the combination (a-4) with (b-4) is very attractive overall. This combination allows backward bends, has a relatively good angular selectivity property, adapts well to curvature constraints both horizontally and vertically, and, last but not least, may be extended easily to accommodate the larger problem of a complete highway network design, as done in Trietsch. The second best would be to take (a-2) instead of (a-4), thus giving up some angular selectivity or to take (b-3) or (b-2) instead of (b-4), and achieving some computational advantages and also suboptimal results.

APPENDIX: CALCULATING THE TOTAL COSTS ASSOCIATED WITH THE VERTICAL ALIGNMENT FOR A GIVEN HORIZONTAL ALIGNMENT

The costs we are concerned with here are those which are significantly affected by the vertical alignment, i.e., the costs affected by \(H, H', \) and \(H'' \), where \(H \) is the alignment, described by a function. These include the earth moving costs, the users' costs (time and fuel, chiefly, but also wear and tear, accidents, etc.), and penalties for exceeding the allowed vertical curvature—although ideally these should also be reflected by the users' costs. We neglect pavement costs, maintenance costs, right of way costs, social costs and ecological penalties since these are virtually fixed for any given horizontal alignment.

For any \(H \) (the highway vertical alignment function), \(\text{EMC}(H) \) is a functional reflecting the earth moving costs, \(\text{UC}(H') \) reflects the users' costs per distance unit, and \(\text{P}(H'') \) is a penalty function designed to enforce the vertical curvature constraint. The vertical alignment problem is to minimize a functional \(J(H) \) as follows:

\[
J(H) = \text{EMC}(H) + \int_{\text{start}}^{\text{end}} \left[\text{UC}(H') + \text{P}(H'') \right] dt. \tag{A1}
\]

\(\text{UC} \) and \(\text{P} \) are positive convex functions (see [8] and [10]). As for \(\text{EMC} \), we may take it as a linear function of the volume of earth we have to move. This volume is the integral along the trajectory of the section area (taken perpendicular to the highway axis). We will use a common design as depicted in Figure 6. However, similar results can be shown for other designs, such as designs which make use of berms (i.e., a cross section with "steps," designed to avoid major landslides) and other variations. To continue with our case, however, the section area depends upon three factors: (a) the elevation of the highway \(H \) above or below ground level \(G \) (i.e., \(H-G \)); (b) the side slope of the ground \(\gamma \) (perpendicular to the highway axis); and (c) the side slope of the ramp \(\beta \). Obviously, \(H, G \) and \(\gamma \) are the functions of \(t \), where \(t \) is a parameter measured along the highway axis from its beginning (denoted as "start") to its end ("end"). As for \(\beta, \) we
can assume that it also depends on \(t \) (if the earth quality varies considerably along the trajectory), or take it as a constant. For a horizontal alignment to be feasible, however, it is required that \(\beta(t) > \gamma(t) \); \(\forall t \in [\text{start}, \text{end}] \). The following formula reflects the area in question, \(h \):

\[
h(\delta, \gamma) = \begin{cases}
 c_0 + c_2 \delta^2; & |\delta| \leq \delta_0 \\
 d_0 + d_1 (|\delta| - \delta_0) + d_2 (|\delta| - \delta_0)^2; & |\delta| > \delta_0
\end{cases}
\]

(A2)

where:

\[
\delta = H - G, \\
\delta_0 = (RW \cdot tg\gamma)/2 \quad (RW \text{ is the ramp width}), \\
c_0 = RW^2 \cdot \sin \gamma \cdot \sin \beta/(4 \sin(\beta - \gamma)), \\
c_2 = \cos^2 \gamma \cdot \sin \beta/(\sin \gamma \cdot \sin(\beta - \gamma)), \\
d_0 = 2c_0, \\
d_1 = RW \cdot \cos \gamma \cdot \sin \beta/\sin(\beta - \gamma), \\
d_2 = \cos^2 \gamma \cdot \sin 2\beta/(2 \sin(\beta - \gamma) \cdot \sin(\beta + \gamma)).
\]

(A3) \quad (A4) \quad (A5) \quad (A6) \quad (A7) \quad (A8) \quad (A9)

This function is strictly convex. For \(\delta = \pm \delta_0 \) the function and its derivative are continuous, but the second derivative has a jump. Note that \(h(0, \gamma) > 0 \) except for \(\gamma = 0 \) where \(h(0, 0) = 0 \); this reflects the fact that some earth has to be moved from one side of the highway to the other. For \(|\delta| \geq \delta_0 \) we have pure filling or digging. Assume that it costs \(K_i \) money units to move a volume unit of earth, where \(K_i \) may be taken as a function of \(t \). The earth moving cost, EMC, is

\[
EMC = \int_{\text{start}}^{\text{end}} [K_1(t) \cdot c_0(\gamma(t))] \, dt. \quad (A11)
\]

If we substitute (A5) for \(c_0 \), we obtain

\[
EMC = RW^2 \int_{\text{start}}^{\text{end}} [K_1(t)\sin \gamma(t) \cdot \sin \beta/(4 \sin(\beta - \gamma(t)))] \, dt. \quad (A12)
\]

Using a proper DTM model (digital terrain map), we can obtain the gradient of the terrain, \(\nabla G \), wherever we wish. We can also compute the longitudinal slope of the highway \(H'(t) \), using the fact that we follow the terrain closely. Clearly \(H'(t) \) is obtained by the dot product of a unit vector in the direction of the highway (given as part of the horizontal trajectory) with the gradient \(\nabla G \). Once we have \(H'(t) \) and \(\nabla G \), (A13) yields \(\gamma(s) \) as follows:

\[
\gamma(s) = (\nabla G \cdot \nabla G - [H'(s)]^2)^{1/2}. \quad (A13)
\]

(or, alternatively, \((H')^2 + \gamma^2 = ||\nabla G||^2 \). This completes our requirements for (A12), and makes it possible to compute the costs associated with (b-3).

Note that if \(\gamma \geq \beta \), or approaches \(\beta \) from below, we are in trouble (due to the \(\sin(\beta - \gamma) \) term in the denominator in (A2)). It follows that if \(||\nabla G|| \) is as large as \(\beta \) or more, we may have to change the horizontal alignment and approach the steep terrain more or less perpendicularly, to lower \(\gamma \). This in turn means a lot of digging/filling to avoid excessive slopes \(H' \). In other words, (b-3) cannot be used at all if we have steep terrain conditions. The use of passable-terrain maps, as in [11], may stem from this problem. However, using (b-4), we may still find it optimal to cross a “forbidden” area. This point illustrates another issue mentioned in the paper, that is the importance of good angular determination capability; on some occasions it may spell the difference between possible and “impossible,” and not just cheap versus expensive.

\footnote{Since \(RW^2 \) precedes the integral, clearly partitioning a (divided) highway into two is a good idea in this case! It seems that many highway engineers agree, as any driver may observe nowadays.}

ACKNOWLEDGMENTS

This paper reflects some results of the author’s Ph.D. dissertation (1983, in Hebrew), written under the supervision of Dr. Gabriel Y. Handler, Faculty of Management, Tel Aviv University. The author is very grateful to Dr. Handler for his help.
REFERENCES

(Received, January 1985; revised, September 1985)

Announcement

The Tenth International Symposium on Transportation and Traffic Theory will be held at the Massachusetts Institute of Technology in Cambridge, Massachusetts, on July 8–10, 1987. It will follow the tradition established in the nine previously held symposia in this series, comprising significant new results in transportation and traffic research. The program will consist of thirty papers and the proceedings will be published before the symposium and provided to all registrants.

To facilitate discussion of presented papers, attendance may be limited and pre-registration will be required. Further information about registration and accommodations is available from:

Secretary,
Tenth International Symposium on Transportation and Traffic Theory
Center for Transportation Studies, Room 1–123
Massachusetts Institute of Technology
Cambridge, MA 02139 U.S.A.